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DIFFRACTION OF A PLANE WAVE BY A THREE-DIMENSIONAL CORNER

by

Lu Tingt and Fanny Kungtt

ABSTRACT

By the superposition of the conical solution for the diffraction of a

plane pulse by a three-dimensional corner, the solution for a general incident

plane wave is constructed. A numerical program is presented for the computa-

tion of the pressure distribution on the surface due to an incident plane

wave of any wave form and at any incident angle. Numerical examples are

presented to show the pressure signature at several points on the surface

due to incident wave with a front shock wave, two shock waves in succession

or a compression wave with the same peak pressure. The examples show that

when the distance of a point on the surface from the edges or the vertex

is comparable to the distance for the front pressure raise to reach the

maximum, the peak pressure at that point can be much less than that given

by a regular reflection, because the diffracted wave front.: arrives at that

point prior to the arrival of the peak incident wave.
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1. INTRODUCTION

Although the pressure wave created by a supersonic airplane is three-

dimensional in nature, the radius of curvature of the wave front is usually

much larger than the length scale of a structure. Therefore, the incident

waves can be approximated by progressing plane waves composed of compression,

expansion and shock waves. By the decomposition of a plane wave to a

succession of plane pulses, the basic problem is therefore the diffraction

of a plane pulse by a three-dimensional corner.

After the incidence of a plane pulse on a three-dimensional corner at the

instant t = 0, the disturbed regions behind the incident plane wave are

either a simple reflection from the surface of the corner, a two-dimensional

diffraction by an edge or the three-dimensional diffraction by the vertex

as shown in Fig. 1. The last region is confined by a sonic sphere r = Ct,

centered at the vertex. The solution for the diffraction by an edge is a

two-dimensional conical solution obtained by Keller and Blank [1]. Once

the appropriated two-dimensional solutions corresponding to the incident

angles are constructed, the boundary data on the sonic sphere about the

vertex are obtained,and the three-dimensional conical solution inside the

sonic sphere is constructed by the determination of the eigenfunctions and

their coefficients [2]. In the next section, the essential procedure and

the equations required for the numerical program I are presented for the

computation of the following items: i) the two-dimensional conical solution

for each edge corresponding to the direction cosines of the incident wave,

ii) the boundary data on the sonic sphere around the vertex and iii) the coefficients
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in the eigenfunction expansions of the solution inside the sonic sphere.

In section 3, the superposition of the solution of the diffraction of

a plane pulse to that of a plane wave of a given wave form is described.

The superposition is carried out by numerical program II with the coefficients

of eigenfunctions expansions from program I and the incident wave form as

input data. Numerical results are presented showing the pressure signatures

received by several points on the surface of the corner corresponding to

various types of incident wave forms.

Both the numerical program I and II are described and listed in the

appendix.

2. INCIDENCE BY A PLANE PULSE

Fig. 1 shows a unit plane pulse incident on a corner of the cube. The

three edges are chosen as the three coordinate axes x. with j = 2,3,4. The

direction cosines of the normal to the incident pulse are designated as nj

2 2 2
with n2 + n3 + n4 = 1. The equation for the plane of the incident pulse is

H n2 x2 + n3 x3 + n 4 x4 = 1 (1)

with xj = x /(Ct)

where C is the speed of sound and t is the time after the passing odf the:plane

pulse over the vertex.

If the plane pulse hit the j - th edge first before hitting the vertex,

nj will be negative. This happens when the incident pulse diffracted by the

first corner of the cube is subsequently diffracted by the adjacent corners.

They begin with 2 so that the index j-l will 'never be zero which will not be

accepted by the computing machine.

:2



For the incidence of a plane wave with the first corner of a building,

nj's are nonnegative, i.e.,

nj 2 0 j = 2, 3, 4 (2)

In order to avoid the complicated discussion for various cases when one,

two, or all of the n.'s are'negative, the discussions in this report

will be restricted to the case of Eq. (2). 

The plane pulse is intercepted by the j-axis at Xj = 1/nj, and inter-

sects the xj-xj_1 plane along the line

nj_ xj_ + n x. = 1(3)

For the convenience of programming, quantities with subscript 1 and 5 are

identified with those with subscript 4 and 2 respectively.

The diffraction due to the j-th edge is confined inside the Mach cone

Gj with vertex at Xj on the x. axis,

G.: (1-nj x.) > [(xj 1) +2 (x+ l)] n (l-n)½.3 .3 .3 j-l + 3\x~+l ~1 (4)

The diffraction by the vertex is confined inside the sonic sphere

-2 -2 .2
S: x2 + x3 + X4 <1 (5)

The plane pulse will be reflected by the face, x.= 0, (the xj 1- xj+

plane) since n. > 0 and the plane of the reflected wave is
3

= nj- Xj_ - nj xj + nj+l 1 (6)

Across the reflected wave i.e., from Pj > 1 to Pj < 1, the pressure rises
.33
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from unity to 2.

Inside the cone Gj but outside and ahead of the sonic sphere S, the

solution is a function of two conical coordinates gj and nj with

X. 1 (1-n ) -xj+l (l-n 2

Cand n j+l ( i(7)
%j = 1-njx. and ~lj = 1-n. i.

The cone Gj becomes the domain inside a unit circle,

2 2
Sj + ~j 1

The reflected wave Pj lin g, variables becomes

2

-njl j - nj+1 l j = (1-nj)i (8)

and it is tangential to the unit circle at the point

- -2- - 2½ (9)A.: =n) and -n /(-nj) and j= (9)
Aj: j j- 1 j llj 'j j+l

Similarly the reflected wave Pj+l becomes

2½
nj_l gj + nj+l ]j = (l-nj)

and the point of contact to the unit circle is

Aj+: gj = n /(l-n)2 and ?j = nj+/(-n) (10)

as shown in Fig. 2. The boundary condition on the unit circle, pj=l, for

the disturbance pressure p is

p =2 3TT/2 > ej > Wj



+ +
where uwj = arcsin ?j

Wj= + +

and pj, ej are the polar coordinates in ~j, nj plane.

The disturbance pressure which lies inside the sonic cone Gj but ahead

2 2 2
of the sonic sphere, xj+L + x. + > 1 and xj > nj, is given by the two-

dimensional conical solution [1],

p = 1 + pj (pj,ej) for 12 pj> 0 and 3T/2 > ej > 0 (11)

with

PJ p (Pj=, e W) Pj (pj, 
)
j, wt) + 1

+ 1 (l-p ) sin (2 w./3)
and p- (pj, O., w.) = - arctan where the arc-

-~ J J v2fp 2cos(2sj/3)- (l ) cos (2wj/3) 2/3

tangent lies in the first and second quadrants and p= {pj/[l+(-pj2)]} .

In the domain common to the cones Gj and G j+l from two edges j and j+l

but outside the sonic sphere S, the disturbance pressure is

p = 1 + pj(oj,ij) + Pj+l(Pj+l2 9j+l) (12)

In the domain ahead the two cones Gj and Gj+l,and behind the reflected shock

Pj l,the disturbance pressure is

p = 2 (13)

In the remaining domain outside the sonic sphere and behind the incident

shock,the distrubance pressure is

p = 1 (14)
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Ahead of the incident shock, the pressure is of course undisturbed,

p = O (15)

Equations (11) to (15) define the disturbance pressure outside the sonic

sphere S.

For the pressure distribution inside the sonic sphere S,the pressure

distribution is represented by the eigenfunction expansions,

P(C,~,') = KX ZA (C) GXZl)G (16)
k

where r = r/(Ct) = (x2 + x3 + x-2

x4 = - C6

x2 = 6 (1-v2 ) sin (C-3r/2)

and x3 = 6 (l1 2 )
~

cos (T-3 rT/2 )

The eigenvalues X'sthe eigenfunctions G(U,e0) and the associated function

ZX(C) are defined and are determined by the first numerical program in Ref. 2.

The constants A.A , B , CX, Dj characterizing the function G (' ,) 'x and

the eigenvalues %'s are now introduced as the input data for the programs in

this report.

For a given set of direction cosines (nj) of the incident pulse,

program I computes the following items: i) the pressure distributions in the

various regions outside of the sonic sphere by the appropriate equation of

Eqs. (11 to 15), ii) the boundary data, F,,cp) on the sonic sphere and

iii) the coefficients KA in Eq. (16) for the solution inside the sonic sphere.

The coefficients \are related to the boundary data by the equation (see

section 5 of [2])
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i i= i j r dp dp F(p,p) G (,r)

+ J dJo cp F(.,) Gia@,)} (17)
-1 3rr/2

Program I in this report is a generalization and an extension of the

second program in Ref. 2 to compute the coefficients K for any incident angle

and to compute the pressure distribution outside the sonic sphere. With

the knowledge of 1 , the pressure distribution inside the sphere is given by

Eq. (16) and are computed by the third program in Ref. 2. Figures 3, 4, and 5

show the pressure distribution on the surface due to the incidence of a unit

plane pulse with direction cosines, 0.3, 0.4 and 0.83333. The discontinu-

ities in the slope of the pressure distribution occur at the crossing of the

sonic cones around an edge and that of the sonic sphere.

3. INCIDENCE OF A PLANE WAVE

The incident plane wave Pi can be represented in general as

Pi = Y(S)

with s = Ct - (n2 x2 + n3 x3 + n
4
x4 ) where the wave form y is a given function

of its phase s and nj's are the direction cosines with respect to the axes

X..
J

When the wave form is a Heaviside function, the diffraction due to the

three-dimensional corner is given by the conical solution described in the

preceeding section. It will be designated as p* (r/(Ct), B,y). The solution

7



corresponding to a plane wave of wave form y(n) is given by the Stieltjes

integral

p(r,e,p,t) = p* ( C ) d(n)ct-~' n'~) dy( )

1 rrl r ~~~~~~~~~(18)

i P 11J [Y j Tl (71j)]

The second form is employed in the numerical program II for the computation

of the pressure signature for points in the surface of the corner.

Numerical examples have been carried out for various wave forms with

n.-l/IFT. Fig. 6 shows the pressure signature received at points r = 0, i
J

and 1 along the line dividing the top surface of the corner 4 = O, P = Tr).

The incident wave is a simple N-wave in sonic boom problems with front shock

strength e. The length of the N-wavewhich is 4, is nearly the length of an

airplane. The unit length scale in the numerical examples is therefore of

the order of hundreds of feet. As shown in the figure, the pressure signature

at the vertex is 8/7 times the incident wave form in agreement with the

theorem stated in [2]. At point r = 0.5, the front part of the pressure

signature is equal to twice the incident wave form, i.e. the same as a regular

reflection and then decreases from the value of a regular reflection after the

arrival of the diffracted waves from the edges and corner. Similar phenomenon

is observed for the pressure signature at r = 1 with a relative delay in the

arrival of the diffracted waves.

Fig. 7 shows the pressure signature at r = 0.5, 1.0 and 2.0 along the

same line j = 0, Tp = T, while the pressure raise in the incident wave in

Fig. 6 is now spread over a thickness of 0.3. The peak pressure received at

r = 0.5 and at r = 1.0 is less than twice the total pressure raise, i.e., the
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value of regular reflection while) at r = 2.0 it is equal to the value of

regular reflection. Fig. 8 shows the pressure signatures at the same set

of points with the pressure raise in the incident wave spread over a

thickness of 0.5. The peak pressure at all these points are less than the value

given by a regular reflection.

The differences in the value of the peak pressure at a point on the

surface from that of a regular reflection is due to the arrival at the point

of the diffracted wave front prior to that of the peak incidence wave front.

This is the case for all the points in Fig. 8. In Fig. 7 the pressure raise is

faster, so that at r = 2, the peak incident wave arrives prior to the

diffracted waves and the peak pressure at r = 2 is the same as the value of a

regular reflection. In Fig. 6, the shock thickness is zero, therefore, the

peak value at any surface point is the same as in a regular reflection with

the exception of points along the edges and at the vertex which always lies

inside the diffracted region.

Fig. 9 shows the pressure signatures at r = 0.5, 1.0, and 2.0 along the

same line 4 = 0, p = v when the front shock in Fig. 6 is split to two shock,

waves joined by the expansion wave of thickness 0.3. Although the peak

pressure is the same as that in the single shock, the peak pressure received

at points r = 0.5 and 1.0 are nearly 25% less than that in the case of regular

reflection. The peak pressure at point r = 2.0 does reach the value of

regular reflection i.e. 2e. Fig. 10 shows the pressure signature at the same

three points when the front shock ismsplit into two shocks separated by an

expansion wave of thickness 0.6. The peak pressure for all three points are

now nearly 25% less than the value 2C in a regular reflection. Figs. 9 and 10

again demonstrate that when the diffracted wave front arrives prior to the arrival
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of the peak incident wave, the local peak pressure can be much less than the

value given by a regular reflection.

The time interval between the arrival at point r along the line

u = 0, cp = 7T) of the leading incident wave and that of the leading diffracted

wave from the edge (both edges in the present example with n2 = n3 = n4 = 1/~

is

AT1 = (d/C) [ JTi-l]/f- (19)

The time interval between the former and the arrival of the diffracted wave from

the vertex is

AT2 = (r/C) [f- - (20)

When the distance between the two split front shock waves is d, the time inter-

val between the arrival of the two shock waves at the point. r is

AT* = (d/C) (21)

The condition for the point r to receive a peak pressure less than that of

a regular reflection is AT1 < AT*, that is,

r/d < J/(J'-2-1) = 5.92 (22)

In the problem of sonic boom, the length scale of the incident wave is

about one qiarter the length of an airplane. When the distance between two

front shocks is 0.3, the maximum radial distance r allowed by the criterion

(22) is nearly 1.8, therefore it is of the order of half an airplane length or

hundreds of feet. In other words, when the front shock is split into two

shock waves (Figs. 9, 10) or spread' out to finite thickness,, the area on the

surface of the corner within a significant distance from the vertex (of hundreds

of feet) will receive a peak pressure much less than the value given by a
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regular reflection due to the relief from diffraction by edges and the vertex.

CONCLUSION

In this report, numerical programs are presented for the computation of

pressure distribution on the surface of a three-dimensional corner due to an

incident plane wave of any wave form at any incident angle. Numerical examples

show that the area on the surface of the corner within a significant distance

from the vertex which can be (of the order of hundreds of feet) will receive a

peak pressure much less than that of a regular reflection when the front shock

is split to two shock waves or when the total pressure raise is spread to a

finite thickness.
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APPENDIX

NUMERICAL PROGRAMS

Program I : determination of coefficients , of the eigenfunction from
the given eigenvalues of X's at a given set of direction
cosines (nj) of the incident pulse

Input Definition

ETA(J) :n2 n n n, the direction cosines of the normal to the
incident pulse

II :control constant

II=l ; for the calculation of Ki.for odd function

II equal to any integer other than one; for the
calculation of Y for even function

NMAX:

LMAX:

XLAM:

BMIN (J):l

DMIN (L):3

INPUT FORMAT

II = 2,

number of terms in the eigenfunction

X, eigenvalue

associated constants for odd function

associated constants for even function

NMAX, LMAX

Set XLAM

ID BMIN(J)}
DMIN (L)

(315)

(F15.0)
(5F15.0)
(5F15.0)

Set{ }
2tf 

II = 1,

END FILE

NMAX LMAX

{}
{}

END FILE
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Note that the input data of XLAM, BMIN(J), DMIN(L) are determinated by the
first program in Ref. [2], and the input data of NMAX, LMAX must be the
same as that program. The calculation of Y at % = 0 for the even function
must be calculated first, and the end file 'ards are used to separate even
function and odd function.

Output and Definition

XLAM

BMIN(J) :
coefficients

DMIN(L) :

ETA(2) , ETA(3) , ETA(4)

K(LAMDA) :

Program II:

These are input data listing

for identification and verification

:n2 , n3, n4, a set of direction cosines

(nj)

KX, the coefficients of the eigenfunction

of incident pulse.

to determine the pressure distribution due to plane wave
of a given wave form

Input Definition

R: r

THE: 0 } Spherical coordinates of pts.

PSI: ep

ETA(2), ETA(3), ETA(4):

RSTART:

TSTART:

RMAX:

TMAX:

n2 , n3, n4 a set of direction cosines

(nj)

the first value of r for pressure
calculation

the initial value of T for pressure
calculation at each value of r

maximum value of r for the pressure
calculation

maximum value of t for the calculation
of pressure distribution at each r

14



At, time increment T = Ti -n'At

number of points r between RSTART and RMAX

number of points T between TSTART and TMAX

total number of x for even or odd function

total numbers of F(I)

the increment of incident wave form function
Y between phases Si and Si_1

I 1

INPUT FORMAT

NMAX, LMAX

NUMBOE

Se XLAM

itf BMIN (J
DMIN (L)

Set
END FIE

END FILE

NMAX

(315)

(15)

(5F15.0)

LMAX

Set 
itf 

SetN L

END FILE

Output

The input data are printed in the first part of the output, and there are
NR numbers of tables in the second part. Each table is for each value of
r, and the pressure distributions are printed in the first column, and the
second column are values of T from TSRART to TMAX.

15
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NUMBOG:

II = 2,

II = 1,

NUMBOE

DELTT:



C DROGRAM I
__C DEERMINATION F THE COEFF!ClENT$ OF THE EiGENFUNCTIUN EXPAN51ON FROMC THE INITIAL DATA

DIMENSION F(70)9FUP(?7~ )RT.F(70,70pSFL(
70,7 0 +

DIMENSION SUMJ(70),5UML(70),BMIN(70),DMIN(
7 0)

DIMENSION FTA(Ln wF1l(!O):"'(1 O) ,Iw,(0O)
COMMON ETAWF1,WF2,RW2,WF,WF2,XXI
0IJ=3 ,41 502* -l -- ----
XXI=1.
RE_ AD(59700n) rETA( i. t-2i)1

7000 FORMAT(3F15.8)
FTA(I)=ETA(4)
ETA;-,)=ETA(2)
DO 402 J=2,4
SIGNEP=SIGN(l,,ETA(J+l))
SItGNEM=SIGN(1.,ETA(J-1 ) 
ABSEM=ABS(ETA(J-1))
ABSEP=ABS(ETA(J+1)L
FJpJM=FTA(J-l)**2+ FTA(J+) l**2
iF(SQRT(EJPJM)-(1.E-08)) 444,44444r6--

h44 WO=PI/4.
BW O=(5.*I)/4. _ _
GO TO 446

445 W0=ASIN(aBSFM/SO~T(FJPJM))
Wo=ASIN(ABSEP/SQRT(EJPJM))

446 CONTINUE
-WFT-JT7=(PI/22.-GWO *S I GNEM)*(2. 3 . )
WF2(J)=2.*PI-WFI(J)
-WF-TJ==(PIT+BWO*STIGNEP)*(2./3.)
BWF2(J)=2.*PI-BWF1(J)

402 CONTINUE
LLMAX=50
ID-M=70
MAXI.J1=60
4AxIUP=60
MAXU2=60
MAXBOT=60

1000 READ(5.1001) II,NMAX,LMAX
-qOOI FOPMAT(31 5

IF(ENDFILE 5) 9999.100P
100 CONTINUE

IF(II *EQ. 1) 1nI.i n

C ODD FUNCTION 16



101 IIMAX=LMAX+NMAX
WRITE(6,10 0 3 )

1003 FORMAT(1H1* 0
NCALL=NMAX
LCALL=LMAX
GO TO 104

,DD FtJNCTIoN*)

C
C -EVEN FUNCTION

103 IIMAX=LMAX+NMAX+2

WR IFT£6,1004)
1004 FORMAT(1H1l* EVEN FUNCTION*)

RN(ALL=NMAX+1
LCALL=LMAX+1

104 -CONTINUE
WRITE(6,7532) ETA(2tETA(3),ETA(4)

7532 FRMAI(* ETA(Z)=*E12.5,3X,*ETA(3)=*,E12.5,3X,*ETA(4)=*,E12o5)
PI=3*1415926
ALPHA=PI /2.
XMU=O 0
PPHI=L+.*(PI-ALPHA/2.)
XNUI=PI/PPHT

--- HALPHI=PPt-ij2o
FPS =0.000001

--------WRITE(69502) NMAXLMAXiiMAX
S02 FORMAT( * NMAX=*,15,5X,*LMAX=*,15,5X,*IIMAX=*,15)

..... 400 REAO(5,lUU;XLA~
IF(ENDFILE 5) 1000,1111

'--1--11 CONTIINuE
100 FORMAT(5F15.0)

- -READ(5,1001) MIN (I ) ,11 =lNCALL)
READ(5,100) (DMIN(L),L=1,LCALL)

MAXPUS=MAXTOP+1
INDEX=1
WRITE(6,32) XLAM

- FORMAl * XLAM=*,E15.8)
WRITE(6,503)

5U3 -URMAT(//* COEFICIENTS OF EIGENFUNCTION*)
WRITE(6,304) (BMIN(I)*I=1,NCALL)
WRITE(6,304) (DMIN(L),L=l,LCALL)

304 FORMAT(5E20.e/(S5X,5E20.8))
DELU1( 1 -UO-2.*FPS )/MAXU1
MAXUST=MAXU1+1
UK=UO+EPS
DO 5 I=1,MAXUST
TOTARG=O.

17



_ WLL IFFF I I 1'IJ

DO 4 J=1,MAXPUS

4 CONTINUE
..- ... IRQW=T

On 13 J=1,NCALL
IF(II *EQ. 1) 111,113

,MA)TOFrPr.F ..r , TIDt L -,- -M

C
C ODD FUNCTION

II1 CONTINUE
..._ XVA L =J

CALL SININT(FUPXVAL,IROW,MAXTOPPIO IDIM ,TRIINT)
G_ TO 114

C

C EVEN. FUNCT I ON
113 CONTINUE

XVAAL = J-1 ]
CALL COSINT(FUPXVALIROWMAXTOP,PI,0,IDIM ,TRIINT)

14 CONT I NUE
.S=XV AL
CALL PPDD(SSXLAM,IlK ,LLMAX ,PP,DP)
TOTARG=TOTARG+BMIN(J)*PP*TP I INT

13 CONTINUE
StJMJ(I )=TOTARG
_JK=(UK+DELU1

5 CONTINUE
TOTEM1=SUMJ( 1 )
DO 19 I=2,MAXU1
COFF=3.+(-1 .)**
TOTEM1=TOTEM1+COEFF*SJMJ(I)

19 CONTINUE
TOTEM1= (TCTEM1+SUMJ(MAXUST) )*DELU1/3.
MAXPUS=MAXBOT+l
INDEX=2
DELU2=(1.+UO-2.*EPS )/MAXtJ2
MAXUSM=MAXU2+1
UK=-1.+EPS
DO 9 I=1,MAXUSM
TOTARG=O.
CALL FFF (UK, INDEX,MAXBOT,F, I I PPHI IDIM)
DO 8 J=1,MAXPUS
FBT(I ,J )=F(J)

8 CONTINUE
IROW=I
DO 23 L=1.LCALL
IF(II .EQ. 1) 121,123

18
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C
C ODD FUNCTION

__.12 121 NT INUE NO. .
XVAL=(2*L-1)*XNU1
CALL SININT(FBT,XVALIROW,MAXBOTHALPHI ,O,IDIM ,TRIINT)
GO TO 124

C EVEN FUNCTION
..___. 1 23_CoNT INUEF

XVAL=2*(L-1)*XNU1
CALL COSINT(FBT,XVALIROW,MAXBOT,HALPHIO,IDIM 9TRIINT)

124 CONTINUE

SS=XVAL
(UF=-UK
CALL PPDD(SS,XLAM,UF,LLMAXgPPDP)
TOTARG=TOTARG+DMIN(L)*PP*TRIINT

23 CONTINUE
SUML( I)=TOTARG
(.K=UK+DELU2

--- 9 CONTINUE
TOTEM2=SUML(1)
DO 29 I=2,MAXU2
COEF=3.+(-1.)**I
TOTEM2=TOTEM2+COEF*SUML(I)

29 CONTINUE
TOTEM2=(TOTEM2+SUML(MAXUSM))*DELU2/3.
EEEM=TOTEM1+TOTEM2

- ~ ---- WRIT E(6,11)EEEM
11 FORMAT( /20X,*K(LAMDA)=*,E15.8)

WRITET(6,401)
401 FORMAT(////)

GO TO 400
9999 STOP

END

5 _... -

d 
_ _ _ _19

19
_ _ . _ 

_ _ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~~~~~---
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UDB ROUTINr SININT( FPXVAL IRO. WMAXST I IDI MTLIM TIDIM.TRIINT
C FILONS METHOD FOR THE NUMERICAL EVALUATION OF TRIGONAMETRICAL

--c- INTE-GRALS--{ ! NTEGrAND=FP(D)*$IN(X*P)
DIMENSION FP(IDIM,TDIM)

__ HHM_(UPLIM-BOTLIM)/MAXST
S2S=O.5*FP(IROW,1)*SIN(XVAL*BOTLIM)
DO 14 J=3eMAXST.2
P=ROTLTM+(J-1)*HH

__ S25=S2S+FP( ROWJ)*STIN(XVAL*P) -
14 CONTINUE
._ J=MAXST+1 ----

S2S=S2S+0.5*FP(IROWMAXST+I)*SIN(XVAL*UPLIM)
S2SM=O. --
DO 16 J=2,MAXST,2
.P-BOQTLIM+(J-1)*HH
S2SM=S2SM+FP(IROW,J)*SIN(XVAL*P)

16 CONTINUE
THE=XVAL*HH
IF(THE-0o2) 25,21,21

21 ALPHA=(THE**2+THE*SIN(THE)*COS(THE)-2**SIN(THE)**2)/THE**3
BETA=2,*(THE*(1.+COS(THE)**2)-2o*SIN(THE1*COS(THE))/THE**3 ____

GARM=4,*(SIN(THE)-THE*COS(THE))/THE**3
GO TO 31

25 ALPHA=2.*THE**3/45.-2.*THE**5/315o+2.*THE**7/4725.
BETA=2./3.+2.*THE**2/15.-4.*THE**4/105o+2o*THE**6/567o
GARM=4./3.-2**THE**2/15.+THE**4/210.-THE**6/11340.

31 FA=FP(IROW,1)
---FBt=-FP(IROW9MAXST+l)

TRIINT=HH*(-ALPHA*(FB*COS(XVAL*UPLIM)-FA*COS(XVAL*BOTLIM))+RETA*
1S- S+GARM*52SM)
RETURN
END

20



SUBROUTINF COSTNT(FP,XVAL,IROWMAXST,UPLIM,BOTLIM,IDIMTRIINT)
C FILON'S METHOD FOR THE NUMERICAL EVALUATION OF TRIGONAMETRICAL

) .. C INTEGRALS--(INTEGRAND=FP(P)*COS(X*P))
DIMENSION FP(IDIM,ITDIM)

_ ___ YHH (UPLIM-BOTLIM)/MAXST
S2SO0.5*FP(IROW,1)*COS(XVAL*BOTLIM)
DO 14 J=3*MAXST,2
P=BOTLIM+(J-1)*HH

__..____.S2S5=2S+FP(TROW,J)*COS(XVAL* --
14 CONTINUE

JZMAXST+1
.. =S2S+O.5*FP(IROW,MAXST+1)*COS(XVAL*UPLIM)
S2SM=O.
DO 16 J=2,MAXST,2
P=BOTLIM+(J-1)*HH
S25M=S25SM+FP(IROW,J)*COS(XVAL*P)

16 CONTINUE
THF=XVAL*HH
IF(THE-0.2) 25,21,21

21 ALPHA=(THE**2+THE*SIN(THE)*COS(THE)-2°*SIN(THE)*+2)/THE**3
BETA=2.*(THE*(1.+COS(THE)**2)-2.*SIN(THE)*COS(THE))/THE**3
GARMa4.*(SIN(THE)-THE*COS(THE))/THE**3
GO TO 31

25-ALPHA=2.*THE**3/45.-2.*THE**5/315.+2.*THE**7/4725.
BETA=2./3.+2.*THE**2/15.-4.*THE**4/105,+2o*THE**6/567
GARM=4./3.-2.*THE**2/15.+THE**4/210.-THE**6/11340o

31 FA=FP(IROW,1)
FB=FP(IROW,MAXST+1)
TRIINT=HH*( ALPHA*(FB*SIN(XVAL*lJPLIM)-FA*SIN(XVAL*BOTLIM))+BETA*

- 1S25+GARM*S25M)
RETURN
END

¢~-__ _

5
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JDR MENSION F(DIM) r I r-
DIMENSION F(IDIM)

IF¢INDEX .EQ* 1) 4,6
_D4 DFlPS pT=T/FiATfMAX 

GO TO 7
6 DELPSI=PPHI/FLOAT(2*MAX)
7 CONTINUE

PS I=O
MAXPUS=MAX+1
DO 19 N=1,MAXPUS
BPSI=PSI-PPHI/2.
CALL FSF(BPSTIUU*FS 9PPHI)
FA=FS

_ .fBPST=2.*PT-PST-PPHT/?.
CALL FSF(BPSIUUFS 9PPHI)
FB=FS
IF(II .EQ. 1) 14,16

14 F(N)=(FA-FB)/2.
GO TO 17

16 F(N)=(FA+FB)/2.
17 CONTINUE

PSI=PSI+DELPSI
19 CONTINUE

RETURN
END

f wA L Y r I* w ! , 1
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sIIRQOIITTNF rN?2rI(Pwn. TAII.Wl .W2.Ss.PC)
PT=3.1415926

_EolL-n.OOnnol _
CONI=l.-RHO**2
IF(CON1+EPSIL) 10910,14

10 WRTTE(6,11)
11 FORMAT* I1-RHO**2+FPSTL .LF. ZFRO. CHECK THF PROGRAM *)

STOP
_14- ._1JCON1 )15,15.17
15 GG=1.

GO TO 21
17 GG=(RHO/(1l+SQRT(CON1)))**SS
21 BTAU=SS*TAU

DD=(1.-GG**2)*SIN(O.5*(W2-W1))
CC=(1.+GG**2)*COS(O.5*(W2-W1)) -2.*GG*COS(BTAU-(W2+W1)*0.5)
SQCD=SORT(CC**2+DD**2)
IF(SOCD-EPSIL) 23,25,25

23 PC=0.5
GO TO 30

25 IF(CC) 28,26,26
26 PC=ASIN(DD/SQCD)/PI

GO TO 30
28 PC=ASIN(DD/SQCD)/PI*(-l.)+l.
30ONTIN-----UE

RETURN
END

5 _ _ .

4
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_vu D r x V V l a F 1 r z r A ur - l I vy* w , , z r r , A 

DIMENSION ETA(10)eX(10),F(10),WF1(10),WF2(10),BWFl(10),BWF2(10)
-_---- COMMON ETAWFlWF2B-WFlBoWF2$XXI

EPS=1.E-06
PI=3l1415926

CONS23=2./3,
FFPS=1.F-n§

199 CONTINUE
__ X( ) =XX IT*SQRT(1 .- UII**2 ) STN( PS 1

X(3)=XXI*SQRT(1.-UU**2)*COS(8PSI)
X(4)=-XXT*tIJJ
TESTX2=ABS(X(2))
TFSTXl=ARS(fXI()
TESTX4=ABS(X(4))
TF(TESTX2 .IE. FPSI 191,192

191 X(2)=0.
192 IF(TESTX3 .LE. EPS) 193,194
193 X(3)=0O

__ 194 CONTINUF
198 CONTINUE

X(1)=X(4)
X(5)=X(2)

_ _ IF(XXI-1.) 201,203,203
201 WRITE(6,202)
202 FORMAT(* ERROR XXI *LT. 1---CASE A*)

STOP
203 IF(X(2) *GT. O. .AND. X(3) *GT. 0. *AND. X(4) *GT. 0. )2049206
204 THALPI=ABS(BPSI-1.57079632)

IF(THALPI-EEPS) 2089208,209
208 BPSI=BPSI+EEPS

GO TO 199
209 WRITE(6,205)
205 FORMAT(* ERROR X(2),X(3), AND X(4) .GT. 1E-06---CASE 8*)

STOP
206 SUMXN=O.

DO 207 J=2,4
207 SUMXN=SUMXN+ETA(J)*X(J)

IF(SUMXN-1.) 215,213,211
211 FS=0.

GO TO 300
213 FS=0.5

GO TO 300
215 DO 258 J=2,4

IF(X(J)-ETA(J)) 221,223,223
221 F(J)=100.

GO TO 259
24



223 VAL1=SQRT(ETA(J-1)**2+ETA(J+1)**2)
VAL2=1.-ETA(J)*X(J)
vsl -Y 1_-1 t&VAl l/V~y/

Z=(-X(J+1)*VAL1)/VAL2
RHO=SQRT(Y**2+Z**2)
IF(RHO-1.) 2259225,251

7S rnCjNTTNIIF

IF(RHO-EPS)226,226,228
726 TAII=PT/2.

GO TO 240
228 CONTINUE

TAUO=ASIN(ABS(Z/RHO))
IF(Z) 235,231,231

231 IF(Y) 233,232,232
232 TAU=TAUO

GO TO 240
__ 233 TAU=PI-TAUO

GO TO 240
235 IF(Y) 236,2369237
236 TAU=PI+TAUO

GO TO 240
237 IF(X(J)) 1237,123791238

1237 F(J)=100.
GO TO 259

1238 CONTINUE
WRITE(6,238) TAUO,TAUY.Z

238 FORMAT(* ERROR FOR Y .GT. AND Z *LT. O----CASE C*/4E20.8)
WRIIE(6,253) JVAL1,VAL2,RHOX(2),X(3)9X(4)9XXIBPSI 9UU
STOP

240 CONTINUE
Wl=WF1(J)
W2=WF2(J)
BWl=BWFI(J)
BW2=BWF2(J)
CALL CON2D(RHOTAUWlW2,CONS23,FIF)
CALL CON2D(RHOTAUBW1,BW2,CONS23,FIIF)
SIGNEP=SIGN(1 ,ETA(J+l))
SIGNEM=SIGN(l ,ETA(J-1 ))

243 F(J) ((I.-FIF)*SIGNEP+FIIF*STGNEM)
GO TO 259

251 F(J)=100.
259 CONTINUE
258 CONTINUE
253 FORMAT(1399E13.5)

SUMF=O.
DO 261 J=2,4

25
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S UrF-Z ur1 -I IF (J 
261 CONTINUE

IF(SUMF EPS) 26^ 260 262
260 FS=SUMF+1.

GO TO 300
262 CONTINUE

IF(SUMF-90.) 263,263,265
C
C----INSIDE ALL THREE CONES

263 WRITE(6,264) (F(J),J=1,4).FIF.FIIF
_264 FORMAT(* ERROR SUMF .LE. 90---CASE D*/6E20.8)

WRITE(6,200) VAL1,VAL2,Y,Z,RHOTAUOWlW2,FIFBW1,BW2,FIIF
STnP

265 IF(SUMF-190.) 267,267,269

C------INSIDE TWO CONES AND OUTSIDE THE THIRD CONE
___ 267 FS=SUMF-lOn. 

GO TO 300
269 IF(SUMF-290.)271,271,272

C
C----- INSIDE ONE CONE ONLY

271 FS=SUMF-199.
GO TO 300

272 CONTINUE
C
C----OUTSIDE ALL THREE CONES

273 DO 279 J=2,4
TEST-ETA(J-1)*X(J-1)-ETA(J)*X(J)+ETA(J+1)*X(J+I)
DJ=ETA(J+1)
DM=ETA(J-1)
IF(X(J) .LE. 0. .AND. TEST .LT. 1.) 275,279

275 IF(X(J+1) .GE. DJ .OR. X(J-1) .GE. DM)281,279
279 CONTINUE

FS=1.
GO TO 300

281 FS=2.
300 CONTINUE
301 FORMAT(* SUB FSF(NEW)* 5X, 5E20.8)
200 FORMAT(6E20.8)

RETURN
END

26



SUBROUTINE PPDD(SS.XLAMXMULLMAXPPDP)
C SUBROUTINE PPDD--WITHOUT.DP

XNU-SS
EPS=1.E-06
DD=1* --
TEMIzI.
7Ym 1 .--YMi I)/._
IF(ABS(ZX) .LE. EPS.AND. ABS(XNU) .LEe EPS) 35,31

_ 31 CONTTNIIF
DO 40 L=29LLMAX
ZL=L-1
DD=DD*(ZL-XLAM -1.)*(ZL+XLAM )/(ZL**2+ZL*XNU)
TEM1=TEM1+DD*ZX**(L-L)

40 CONTINUE
ARTFL=((1.-XMU1/(1.+XMU))**(XNU/2.)
PP=ARTFL*TEM1
GO TO 41

35 PP=1.
41 CONTINUE

DP=O.
RETURN
END

27



C PROGRAM II
r)IMFNSION EDIM(20) ,B.PTN(20 ) .MTN[20
DIIfEfNST'ON ETA ( 10)Fl(10 ) ,F2 ( 10o),BWF1(1O),F2( i)
DIMENSTON ELAM(40 ) ZZZ ( 4o0 ,2; 0 IPP4CnnI --GS (-G 41
COMaON /BLOCKl/ETAWF1 iWPF2,BWF1i,.WFr2XXI
F_ EA)(5,7000) (FTA(TI)T=2.4)
PF'D(5,1C) RMAX,TMAXDFLTT ,TSTART,RSTART

7?nO FlRMAT(F5F1.R)
READ(5,7001) NFMAX,NT,NR

7?rl Far~AT(315)
RIT T ( 6,7002)

7ncO FOPMAT(IH1)

TA(1)=ETA( 4)
ETA(5)=ETA(2)
PFAD( 5910) (F(I),I=1 NFMAX)

10 FRMAT(5F10.O)
READ(5,10)THF,PSI
t!l)=COS( THE)
LLM AX= 0

PI=3.141.5926
ALDHA=PI /2.
QPHI=2.*(Pl-ALPHA/2.)
XNUJ =PI /PDHI
0DSI=PSI-PPHI/2.

D3LR=RMAX/NR
DELT=TMAX/NT
WliITE(6,1) (ETA(I),I=1,3),RMAX,TMAXDELTTDELRDELT

1 FORMAT(* ETA(1)=*,E12*5,5X,*ETA(2)=*,E12.5,5X,*rTA(3)=*,E12.r/
1* R X=*,12,MAXAX=*,E12.5,XX,*DELTT=*,E12.5,5X,*DFLR=*
2P12.5 ,5X,*DELT=*,E12.5)
WRITE(6,7005) UU,PSI

7005 FCOMAT'(2X,*UU=*,E19.8,5X,*PSI=*,E15.8)
! I I t ( 6 ,9 700)

7003 FORMAT(//3X,*F I )*)
WRITE(6,440) (F(I),I=I1,NFMAX)

44n FORMAT( 5F20.5)
DO- 442 J=2,4
SIGNEP=SIGN(1.,ETA(J+I))

SIGNEM=SIGN(1.,ETA(J-1))
ABSEM=ABS(ETA(J-1))
A-- SP=ABS(ETA(J+1))
FJPJM=ETA(J-1)**2+ETA(J+I)**2
TIF(SRUTItlJPJM)-(1.F-08)) 444,444,445

444 WO=Pl/4*

O h=os 446 28*
G3) TO 446 28-~~~~~~~~~~~~2

_ _ _--



'+45 W0=ASIN(ABSEM/S(QRT(EJPJM))
W0=ASI N (ABSEP/SQRT(EjPJv)}

446 CONTINUE
___ F1 (J)=(PI/2.-WO*SIGNEM)*(2./3*) _
'F(J) =2.*P -WF1 (J)
P'JF1 (J) =(PI+BWO*SIrNEP)*(2./3),
wF?(J) :2.*P I- BWF1iJ)

442 ClNlTIN.IE
NI.JMB=O.

10do rPQAD(5,1001) ITINMAXLMAX _-

10°1 F')RMAT(3I5)
IF(FNDFILF 5) 999,9C0 2

n002 CONT INHIE
I-(TI .EQO 1) 101,103

ODD FUNCTION
101 IIMAX=LMAX+NMAX

READ(5,1001 ) N MBCF

I T E ( 6, 2)
2 FORNAiAT(IHl// * ODD FUNCTION*)
NCALL=NMAX
LCALL=LMAX
rO TO 104

C \V/FN FUNCTION
103 IIVAX=LMAX+NMAX+2

R-AD(5,1001) NUMBOE

WRITE(6,3)
3 FORMAT(1H1,//* EVFN FUNCTION *)
NCALL=NMAX+1
LCALL=LMAX+1

104 CONTINUE
-WKIIt(6.,502) NMAX,LMAX, I IMAX,ALPHAPPHI,XNU1

502 FORMAT( * NMAX=*,I5,5X,*LMAX=*,I5,5X,*IIIMAX =*,I'/ 5X *
1ALPHA=*E12 5,5X*PPH I =*,E12.5,5X,*XNU1=*,E12.5 )

110 READ(5,100) XLAMEEEM
5 100 FRMAT(SE15.e8

IF(ENDFILE 5) 1000,1111
1111 CONTINUE
2000 N! MB=NtJMB+1 

_I3 
Er)LD=EEEM
NBBB=NBBB+1
E-FR'=(NUMBOE-(NBBB- 1))*EEEM/NUMBOF
READ(5,100) (BMIN(I),I=1,NCALL) 29

__���_�___



F-RAD(5,9100) ()MIN(L) ,L=1,LCALL)
CALL T102(XLAM,,1. , DIMBRBP )
AA A AA= R RPP

__ WRITE(6,32) XLAM,AAAAAA tEOLD
32 FORMAT( * XLAM=*,F14.995X,*AAO=*,Fl4.9 5X,*K (LA-MA) =*,F14.9)

9R rITE(6,503)
043 FORMAT(// * COEFFICIENTS OF EIGEN-FUNCTIONS*)

WRITE(6,304) (BMIN(I),I=1,NCALL)
WRITE(6,304) (DMIN(L) L=I ,LCALL)

304 F0PMAT(5E20.8/(5XEt'2.8) )
'TP ITE (6 , 401

401 FORMAT(////)
....... ''[LAM ( NHMB) l -) =FM
CALL T102(XLAMAAAAAA,~EDIM~,BB 5BE)
DO 2001 T=1,10

2q01 ZZZ(NUMR,I)=ECIM(I)
IF(UlJ) 2100,2002,200?

202.: CCnNTINUE
IF(II .EO. 1) 200,203

-- oDD FUNCTION
"0) XMUJ=tJU

DH i = P S I
PPUS=O.
0-- 201 J=1,NCALL
SS=J
CALL PPDD(SS,XLAM,XMULLMAX ,PPDP)
$INFU=SIN(J*PHI)
PPUS=PPUS+BM I N (J) *'PP*S I NFU

201 CONTINUE
GG(NUMB)=PPUS
GO TO 110

C

C FVEN FUNCTION
203 CONTINUE

XN U= JU
PHI=PSI
PPtJS=O.
DO 206 J=1,NCALL
SS=J-1
A------ LL PPDD(SSXLAMXMU,LLMAX, P,DP) 

COSFU=COS(SS*PHI)
3_-- c U S = g'U b+N -mIN(J *iPP*COSFU

206 CONTINlUE
2 (, NUMB ) =PPU
GC' TO 110 30,_ .. 

_ __ ___.._______



2100 IF(II .EO. 1) 301,400

C QODD FUNCTION
301 XMU=UtJ

OHI=PSI
PMIN=O.
DO 302 L=1,LCALL
SS= ( 2*L-1 )*XNU1
CALL PPDD(SS,XLAM,-XMULLMAXPPDP)
SINFU=SIN(SS*PHI)
DMI N=PMT N+M N ( L ) *P*NFU

;02 CONTINUE
GG (NUMB) =PMIN
GO TO 110

r EVEN FUNCTION
400 XMU=UUI

DHI=PSI
PM I N = O.
DO 402 L=1,LCALL
%S=2*(L- )*XNtUI
CALL PPDD(SSXLAM,-XMU,LLMAXXPPDP)
COSFU=COS(SS*PHi)
PM ! N=PM I N+DM I N( ) DP*COSFU

402 Coh!TI NJE
-G,(NUMB)=PMIN
(O TO 110

9g99 MAXNIIM =NUMB

DO 2006 I=1,10
2006 CONTINUE

R=-D.ELR +PSTAPT
2200 R=9+DELR

IF(R-NMAX) 2202,220?2 2201
2201 STOP
2202 CONTINUE

WRITE(6,7004) R
-7no4 FORMAT(//5X,*R=*,E12.5tlX,*P*,17X,*T*j

T=-DELT+TSTART
252 T=T+DELT

IF(T-TMAX) 2602,2602,2200
26?07 CONTINUE

DO 2400 N=1,NFMAX
ST=T-N*DFLTT +0O0001
IF(ST) 2203,2203,2205

2203 BI(,D=O.
GO TO 24O0 31



2205 Xx !=R/ZT
IF(XXI-1.) 2300,2207,2207

2?07 CONTINUE
CALL FSF(BP.SIUJU,F.cgPH P .H..
9I.-P=F.S
G__ , TO 2400

2nf PIGoD=o.
DO 2309 I=lMAXNUM
CALL INTER(XXI ,I ,ZZZZXXI )
_ R InD=BTGP+ELAM( I )*7XXI*G(!) I

?n9 CNNMlT I NUE
?4nn DP(N)=BIGP

_.11MF:P=O 
nn 2405 M=1,NFMAX

?L05 SUM'FP=SUMFP+ PP( M) XF ( M)
WRITE(6,2407) SUMFP,T

2407 FORMAT(19X ,2E20.8)
GO,!) TO 2525

Vr] STOP

FND
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SIJRrOUJT INE INTFR(XXI, ICOL,ZZZ,ZXX I )
DIMFNSTON ZZZ(409,2)
N1= n

=O.

X=X+O.1

IF(X-XYI) 10,20,30
20 ZXXI=ZZZ(ICOL,N)

GO TO 50
30 IF(N *GT. 10) GO TO 40

IF(N .LE. 1) GO TO 60
_ ZXXI=ZZZ(ICOLN-1)+(ZZZ(ICOLN)-ZZZ(ICOL N-1))*(XXI-X+0.-)/O. --

GO TO 50
40 WrITF(6*41) XXI
41 FORMAT(//* ERROR IN SUB. INTER -- FOR XXI=*,E12.5,* IS OUT CF RA

1NGE*)
STOP

50 CONTINUE
-f WRITE(6,51) XXIZXXI,ZZZ(ICOL, N-1)ZZZZ (ICOL N)

51 FORMAT(* SUB INTER*, 5E20.8)
GO TO 65

60 IF(ICOL .GT. 1) GO TO 61
7ZZZ7Z= 1
Gr, TO 64

61 ZZZZZ=O.
64 CONTINUE

LXXI=(ZZZ(ICOL,1)-ZZZZZZ)*XXI+ZZZZZZ
65 CONTINUE

RETURN
END

33
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;U9R9GUTINE FSF(BPSIUU-,FS,PPHI)
DT'FNSTON FTA(1,)gX(10)9Ft)n.WFtI( (-'li) WF!(! ;9 WF2(!O )-
CJNMIohN /BLOCK1/ETA,WF1 ,vi'F2BWF19,BlF2,XXI

C C- 06 _________-- -- ---

PI=3.1415926
C0N!S23=2./3.

EFPS=1.E-05
_19 CONTINUFE

X(2)=XXI*SORT(1.-LJIi**2)*SIT(DmSI)
X ( 3) =XX I *SQRT (1 .- LJ**?2 ) *COS (BPS I) ]___ _
X (4 =-XX I*tJU
T-EoTQ2=ARS;(X 2)
T iTX=AHFS(X(3))
TESTX4=ARS(X(4))
IF(TESTX2 *LE. EFS) 191,192

191 X(2)=0.
192 IF(TrFSTX3 .LE. EPS) 1931,194
.9) X ('4) =0. --- __
!94 c- TT, N I NUE
i' C)h T I NUE

X(1)=X(4)
X(5)=X(2)
IF(XXI-1 ) 201,2n3,203

'.l ",i: IT F (6 ,072 XXI X() X3) ,X(4), UIU,BEPSI
i0 RFO RAT(* ERROR XXI .LT. 1---CASE A* 6E14.5)

T TnP
7G0 IF(X(2) .GT. 0, AND. X(3) .GT. Co. AND° X(4) *GT. C. )2049206
204 THALPI=ABS(BPSI-].570 79632) _

IF(THALPI-EEPS) 20P,208,209
208 BPSI=BPSI+EEPS

-* TO 199
209 WRITE(6,205)
7o hD(), i ~IA(* ERROR X(?),X(3), AND X(4) .GT. 1E-06----ASE *

.JCT()P7 _ ____ _ _
206 SIMXN=nO

DO 207 J=2,4
-7?7-SU ,--=JiJMXN!+ET(J) *X(J)

IF(StJMXN-1 ) 215,213,211

0O T) 300

T'O) 1'0 300
3--- 'r- -. _ A ? / J=2,4

IF(X(J)-ETA(J)) 22!,223,221
-(J)= 259i .

r-n TO 259 34



?27 VALI=SORT(ETA( J-1 )**?+TA (J+1)**2 
VAL2=1.-FTA (J )*X ( J)
Y=(X(J-1)*VAL1)/VAL2
7= (-X(J+l)*VAL1)//V lL 
PH h= so PT ( Y**)2+ Z**2 )
IF(PHO-1.) 225,225.251

.. 5 C N TINI E
IF(RHO-EPS)226,226,22R

: 6 TAt=PI /2.
'.) TO 240

'28 CONTINNUE
T.r1o=ASIN (AR ( 7/RHO)1 _ __
IF(7) 235,231,23]

)1i IF(Y) 233,222,732
' TA=TAIJO

fnl TO( 240
z t 'Ff=--~'I -T Ai j...

:0 TC( 24n
-- T(Y) 2363,2h,?37-

"7 6 TAU=PI+TAUO

' ,0 TO 240
TF(X(J)) 1237,1237,1238

! ,7 F ( )=]00

C-") TO 259
_; :. R>)NTINUE

wqITTE(6,2',8e TAUO,TAI),Yt7

?38 FORMAT(* ERROR FOR Y GT. AND Z. .LT. C ----CASE C*/4E2.8)
WRIlF(6,253) JVALIVAL2,RHO,X(2),X(3),X(4),XXI,PSI UU
STOP

4()0 CONTINUJE
1 =WF 1. (J)

W2=WF2(J)
RW l=BWF (J)
WA2?=BWF? (J)
CALL CON2D(RHO TAU,W1,W2 CONS23,FIF)

6 -- ~CALL CON2D(RHO,TAU,RW1,BW2,CONNS23,FIIF)
.......NEP=SISIGN(1.,ETA(J+1)}

SIGNEM=SIGN(1,,ETA(J-1))
243 F(J)= ((1.-FIF)*SIGNEP+FIIF*SIGNFM)

r., TO 259
.- ']i F(J)=100.

Qc) C)NT INUJE
3 --_-_ - -

258 CONiT I NUE
2 ?3 PFRMAT(I399El3.5)

C'! t1 ,F=0.

n 261 J=2,4



StJMF=_SIIMF+F(J)
261 CnNT I , IE

IF(SUMF-EPS) 260,260,262
?60 Fg=SilMF+].

-n TO ?00
262 CONTINUE

IF(q!MF--90.) 263,263,265

C----INSIDE ALL THREE COIES
263 WRITE(6,264) (F(J),J=1,4),FIF, FIIF
264 FORMAT(* ERROR SUMF *LE. 90---CASE D*/6E20.8)

WRITE(6,200) VAL1,VAL2,YZ,RHO,TAUO,Wl1W2,FIFBw1,'W2,FIIF
5TOP

?65 IF(SlJMF-190o) 267,267,26q

C ------IN IDF TWO CONES AND OUTSIDE THE THIRD CONE
267 FS=SUlF-100.

GO TO 300
69 ITF(SUMF-290.)271,271,272

C
C … TNSTIE ONF CONE ONLY

271 FS=SUMF-199.
GO TO 300

272 CONTINUE
C
C----OIJT.SIDE ALL THREE CONES

f23 DO 279 J=2,4
TEST=FTA(J-1)*X(J-1)-ETA(J)*X(J)+ETA(J+1)*X(J+i)
DJ=ETA(J+1)
DM=ETA(J-1)
IF(X(J) eLE. O..AND. TEST .LT. 1.) 275,279

275 IF(X(J+I) *GE. DJ .OR. X(J-1) .GE. DM)281,279
(w CON I NIF

FS=1.
GO TO 300

281 FS=2.
6 300 CONTINUE

301 FORMAT(* SUB FSF(NEW)* 5X, 5E20*8)
zOu bURMA (6E20.8)

PETURN
tND

2
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SUqROUTINF CON2D(RwO#TAUWlW2,SS,PC)
EPSIL=0.000001
CON1=1.-RHO**2

__ IF(CONI+EPSIL) 10,10,14
10 WRITE(6,11)
11 FORMAT(* 1-RHO**2+EPSIL .LE. ZERO, CHECK THE PROGRAM *)

STOP
14 IF(CON1 )15,15,17
15 GGo1.

GO TO 21
1I CGG- RH O /1l.+SORT(CON1)))*SS
21 BTAU=:SS*TAU

DD=(1.-GG**2)*SIN(0.5*(W2-W1))
CC=(1.+GG**2)*COS(0.5*(W2-W1)) -2**GG*COS(BTAU-(W2+W1)*0.5)
SOCD=SORT(CC**2+DD**2)
IFSOQCD-EPSIL) 23,25,25

23 PC=0.5
GO TO 30

25 IF(CC) 28,26,26
26 PC=ASIN(DD/SQCD)/PI

GO TO 30
28 PC=ASIN(DD/SQCD)/PI*(-1)+1. 
30 CONTINUE

PFTOPN
FND

37



SURROUTINE T102(XLAM9AAAAAAAEDIMBBB8BB)
FMILENSION tDIMt,20)
COMMON XXXXL
XxXL=xLALM
XMAX=O.9989

XOXL=F3(XLAM,XO)
--.-. XOXLP F3{XLAM+-.1,XOr 1

XOXLM=F3(XLAM-1. Xn)

10 FO=(XOXL+XLAM*(XLAM+1.)*XOXLM2/(4.*XLAM+6.))*AAAAAA
GO~=-t-LAM*XOXLM+(xLAM+i.I*XLAM+2)*xLAM*XOXLP/(4*xLAM+6.)*AAAAAA --
DELX=O.001

:=FO

--Xf5-T-0fSTO.0999
20 XKI=Fl(X,F,G)*DELX
---fLi-F2(X,FGt*DELX
XK2=Fl(X+DELX/2., F+XK1/2., G+XL1/2.}*DELX

- XL2-F2(X+DFLX/2.* F+XKt12., GvXL1/2.*!DELX
XKI=F1(X+DELX/2., F+XK2/2., G+XL2/2.)*DELX
XL3IF2(X+DELX/2., F+XK2/2., G+XL2/2*)*DELX
XK4=F1(X+DELX9 F+XK3, G+XL3)*DFLX

------ --Xt4-F2(X+DELX, F+XK3, G+XL3)tDFLX
DELF=I./6.*(XK1+2.*XK2+2.*XK3+XK4)

X=X+DELX
F=F+DELF 
G=G+DELG

. -.....-.... fCx . .XTrET 2n1,203
201 EDIM(I)=F

XTEZT-XTEST+Oo1
I=I+1

----20? CONTINTUE
IF(X-0.0099999) 20,31,31

-- 3-F(X-O.98999) 32,33,33
32 DFLX=O.O1

Gn0 TO 20
33 IF(X-0.9989) 34,40,40

----34- -DtX-O.OOl 
GO TO 20

---- *--Z-ET-A-l.-X
Cl=-XLAM*(XLAM+1o)/2.

G[E ND-+T r G/r iF**C I I -I_ I EA I



41 BBBRBB=1./GEND
UPt'-Mt'l I)(-- , G END
RETUIRN

_ FN~~~~~~~~~~~~~~~~~~~~.m ~ ~ ~ ~ ~ ~_3
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FUNCTION Fl(AB,C)
COMMON XLAM

-F.-T U RN
FNlD

40



FUNCTION F2ABC})
COMMON XLAM
z2=(-2.*A*(A**2-1.)*C-XLAM*(XLAM+l.)*B)/( A**2*(A**2-1.))
RETURN
E ND

6

5

4

3

2

~~~~~~~~~~~~~~~1 ~~~~41



FUNCTION F3(D,F)
F =FXP(CD*ALOG(E))
RFTU 'N
END

42



SURROUTINE PPDD(SS,XLAM,XMU,LLMAXPPDP)
SUBROUTINE PPDD--WITHOUT DP

XNU=SS
EPS=1.E-06
DD=1.
TEM1=1.
ZX=(1.-XMU)/2.
IF(ABS(ZX) *LE. EPS.AND. ABS(XNU) .LE. EPS) 35,31

31 CONTINUE
DO 40 L=2,LLMAX
ZL=L-1
DD=DD*(ZL-XLAM -1*)*(ZL+XLAM )/(ZL**2+ZL*XNU)
TEM1=TEM1+DD*ZX**(L-1)

40 CONTINUE
ARTFL=((1.-XMU)/(1.+XMU))**(XNU/2.)

PP=ARTFL*TEM1
GO TO 41

35 PP=1.
'' CONTINUE

DP=O.
RETURN
END

3
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